CHÀO MỪNG BẠN ĐẾN VỚI HỆ THỐNG E-LEARNING CỦA TRƯỜNG THPT CHUYÊN HẠ LONG
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2024

 \(ℕ,ℤ,ℚ,ℝ,C\) lần lượt là tập hợp các số tự nhiên, số nguyên, số hữu tỉ, số thực và số phức.

 Do đó \(ℕ\subsetℤ\subsetℚ\subsetℝ\subset C\)

13 tháng 11 2024

Ta có \(\sqrt{2+2\cos2x}=\sqrt{2+2\left(2\cos^2x-1\right)}=\sqrt{4\cos^2x}=2\left|\cos x\right|\)

\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|,\forall x\inℝ\)  (1)

Đặt \(g\left(x\right)=f\left(x\right)-\left|\cos x\right|\)

Khi đó (1) \(\Leftrightarrow\left[f\left(x\right)-\left|\cos x\right|\right]+\left[f\left(-x\right)-\left|\cos x\right|\right]=0\)

\(\Leftrightarrow g\left(x\right)+\left[f\left(-x\right)-\left|\cos\left(-x\right)\right|\right]=0\) (do \(\cos x\) là hàm chẵn)

\(\Leftrightarrow g\left(x\right)+g\left(-x\right)=0\)

\(\Leftrightarrow g\left(x\right)=-g\left(-x\right)\)

\(\Leftrightarrow g\left(x\right)\) là hàm lẻ

Khi đó \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ. Thử lại, ta thấy:

(1) \(\Leftrightarrow f\left(x\right)+f\left(-x\right)=g\left(x\right)+\left|\cos x\right|+g\left(-x\right)+\left|\cos\left(-x\right)\right|\)

\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|\), thỏa mãn

 Vậy \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ bất kì có tập xác định là \(ℝ\)

 \(\Rightarrow I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}f\left(x\right)dx\)

 \(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left[g\left(x\right)+\left|\cos x\right|\right]dx\)

\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}g\left(x\right)dx+\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\)

\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\) (do \(g\left(x\right)\) là hàm lẻ)

\(I=\int\limits^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}\left(-\cos x\right)dx+\int\limits^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}\cos xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\left(-\cos x\right)dx\)

\(I=-\sin x|^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}+\sin x|^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}-\sin x|^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\)

\(I=6\)

 

 

10 tháng 11 2024

  \(x=3y\) và y = 5\(x\)  thay y = 5\(x\) vào \(x\) = 3y ta có: \(x\) = 3.5\(x\) 

    ⇒ \(x\)   = 15\(x\) ⇒ \(x-15x\) = 0 ⇒ \(-14\)\(x\) = 0 ⇒ \(x=0\)

Thay \(x\) = 0 vào y = 5\(x\) ta được:  y= 5.0 = 0

Vậy \(x=3\)y; y = 5\(x\) thì y = 0 

 

NV
18 tháng 10 2024

Chắc em ghi nhầm đề, hàm là \(y=x^3+3x^2-4\) đúng ko?

NV
23 tháng 9 2024

Gọi độ dài cạnh lăng trụ là a

Trong mp (ABC), lấy D đối xứng B qua AC \(\Rightarrow ABCD\) là hình thoi

Trong mp (A'B'C') lấy D' đối xứng B' qua A'C' \(\Rightarrow A'B'C'D'\) là hình thoi

\(\Rightarrow A'BCD'\) là hình bình hành nên \(A'B||D'C\)

\(\Rightarrow\left(A'B,B'C\right)=\left(D'C,B'C\right)=\widehat{B'CD'}\) (nếu nó nhọn, và bằng góc bù với nó nếu nó tù)

\(D'C=A'B=\sqrt{A'A^2+AB^2}=a\sqrt{2}\)

\(B'C=\sqrt{B'B^2+BC^2}=a\sqrt{2}\)

\(B'D'=BD=2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)

Áp dụng định lý hàm cos:

\(cos\widehat{B'CD'}=\dfrac{B'C^2+D'C^2-B'D'^2}{2B'C.D'C}=\dfrac{1}{4}\)

\(\Rightarrow\left(A'B,B'C\right)\approx75^031'\)

NV
23 tháng 9 2024

loading...

NV
28 tháng 8 2024

Nếu \(f\left(x\right)=0\) có nghiệm trên \(\left[-1;1\right]\Rightarrow\min\limits_{\left[-1;1\right]}\left[f\left(x\right)\right]^2=0\) ko thỏa mãn yêu cầu

\(\Rightarrow f\left(x\right)=0\) vô nghiệm trên \(\left[-1;1\right]\)

Khi đó

\(f'\left(x\right)=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow f'\left(x\right)\le0;\forall x\in\left[-1;1\right]\)

Xét hàm \(y=\left[f\left(x\right)\right]^2\) trên \(\left[-1;1\right]\)

\(y=\left[f\left(x\right)\right]^2\Rightarrow y'=2f'\left(x\right).f\left(x\right)\) 

Do \(f'\left(x\right)\le0\) và \(f\left(x\right)=0\) vô nghiệm (nên ko đổi dấu) trên \(\left[-1;1\right]\) nên:

TH1: \(f\left(x\right)>0;\forall x\in\left[-1;1\right]\Rightarrow x^3-3x+1>-m\)

\(\Rightarrow-m< \min\limits_{\left[-1;1\right]}\left(x^3-3x+1\right)=-1\)

\(\Rightarrow m>1\)

Khi đó \(f'\left(x\right).f\left(x\right)\le0\Rightarrow y=\left[f\left(x\right)\right]^2\) nghịch biến trên \(\left[-1;1\right]\)

\(\Rightarrow y_{min}=y\left(1\right)=\left(1-3+m+1\right)^2=\left(m-1\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}m=0< 1\left(loại\right)\\m=2\end{matrix}\right.\)

TH2: \(f\left(x\right)< 0;\forall x\in\left[-1;1\right]\Rightarrow x^3-3x+1< -m\)

\(\Rightarrow-m>\max\limits_{\left[-1;1\right]}\left(x^3-3x+1\right)=3\)

\(\Rightarrow m< -3\)

Khi đó \(f'\left(x\right).f\left(x\right)\ge0\Rightarrow y=\left[f\left(x\right)\right]^2\) đồng biến trên \(\left[-1;1\right]\)

\(\Rightarrow y_{min}=y\left(-1\right)=\left(-1+3+m+1\right)^2=\left(m+3\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}m=-2>-3\left(loại\right)\\m=-4\end{matrix}\right.\)

Vậy \(m=2;m=-4\) (C đúng)

27 tháng 8 2024

=5145484985742651291274572147214912742724765142721567

NV
26 tháng 8 2024

Không gian mẫu: \(C_{14}^2\)

a. Số cách rút ra 2 bi đỏ: \(C_6^2\)

Xác suất: \(\dfrac{C_6^2}{C_{14}^2}=\dfrac{15}{91}\)

b. Số cách rút 2 viên không có viên xanh nào (nghĩa là 2 viên thuộc 10 viên đỏ hoặc trắng): \(C_{10}^2\) cách

\(\Rightarrow C_{14}^2-C_{10}^2\) cách rút ra ít nhất 1 viên trắng

Xác suất: \(\dfrac{C_{14}^2-C_{10}^2}{C_{14}^2}=\dfrac{46}{91}\)

c. Có 2 trường hợp: bi thứ nhất màu trắng và bi thứ nhất không phải màu trắng.

Xác suất: \(\dfrac{C_4^2}{C_{14}^2}+\dfrac{C_{10}^1}{C_{14}^1}.\dfrac{C_4^1}{C_{13}^1}=\dfrac{2}{7}\)

NV
7 tháng 8 2024

Thiếu hình đồ thị rồi em

NV
8 tháng 8 2024

\(-x^3+3x-7+2m=0\)

\(\Leftrightarrow x^3-3x+7=2m\)

Xét hàm: \(f\left(x\right)=x^3-3x+7\)

\(f'\left(x\right)=3x^2-3=0\Rightarrow x=\pm1\)

Bảng biến thiên:

loading...

Từ BBT ta thấy pt có 3 nghiệm pb hay \(y=2m\) cắt \(y=f\left(x\right)\) tại 3 điểm pb

\(\Leftrightarrow5< 2m< 9\Rightarrow\dfrac{5}{2}< m< \dfrac{9}{2}\)